

#### **BayREN December Forum**

San Rafael, CA, December 10, 2015

### **Graham Irwin**

Principal, Essential Habitat Architecture www.essentialhabitat.com



### What is Passive House?

- Rigorous, Voluntary Energy Efficiency Standard
- Formalized by European Scientists ~1990
- Based on Super-Insulated, Passive Solar & "Low-Energy" Buildings
- 30,000+ Worldwide: Residential, Commercial, Institutional Buildings



The Passive House Standard is a rigorous building performance standard. Consultants, projects or building components that have obtained the right to carry the logo have committed themselves to design excellence and the Passive House energy performance criteria.



World's 1<sup>st</sup> Passive House Kranichstein Passive House Darmstadt, Germany (1990) <u>1<sup>st</sup> Passive House in US</u> Smith House Urbana, Illinois (2003) <u>1<sup>st</sup> Passive House in CA</u> Tahan Residence Berkeley, California (2007) <u>1<sup>st</sup> Certified Passive House in CA</u> <u>1<sup>st</sup> Certified PH Retrofit in US</u> O'Neill Residence Sonoma, California (2010)

### **Passive House in Marin County**



The Blue<sub>1</sub> House (PH Retrofit) Community Land Trust of West Marin (CLAM) Point Reyes Station (2009)



Blue<sub>2</sub> (Affordable Rental Housing) Community Land Trust of West Marin (CLAM) Point Reyes Station (2010)



James Residence (Staged Retrofit) Larkspur, CA (2010)



Green Gulch Farm Zen Center (6 Unit Dormitory) Muir Beach (2011) 1<sup>st</sup> Certified Multi-Unit PH in US

#### **Passive House in California Code**

- Marin County Building Code (2013)
  - Passive House recognized in Marin County Green Building Requirements
- San Francisco Planning Code (2014)

- Priority processing for Passive House projects

#### 1<sup>st</sup> Multi-Family PH in California



Sol-Lux Alpha, 4 Net-Zero Condominiums, San Francisco, CA (Under Construction)

### **How Does Passive House Work?**

- Ventilation System is Main System
- Size Building Loads to Fresh Air Supply
- Invest in the Shell, Save on the Equipment

#### Minimize Losses

#### Maximize Gains

- 1. Super-Insulation
- 2. Air-Tightness
- 3. Heat Recovery Ventilation
- 4. Controlled Solar Gains
- 5. Efficient Equipment, Appliances & Lighting



Image Source: Passivhaus Institut (PHI)

### **Centralized Ventilation**

#### for "Heat Recycling" & Superior IAQ



- **Centralized Ventilation** 
  - Air Extracted from "Wet" Rooms
- Air Supplied to Living & Sleeping Rooms
- Balanced & Continuous
- Use Windows in Nice Weather

Image Source: www.greenbuildingstore.co.uk/mvhr.php

#### Passive House HRVs Recover 8-15x Their Electrical Use (PHI) Passive House Ventilation (0.3 ACH) Exceeds ASHRAE 62.2 Levels

### What About Cooling?



Source: Passive Houses in Mediterranean Climates, PHI

### What About Cooling?

Peak Loads: Seville, Spain, Standard Construction



Source: Passive Houses in Mediterranean Climates, PHI

### What About Cooling?

Peak Loads: Seville, Spain, Passive House



### **Proof in Practice**

#### A Passive House in a Heat Wave



Midori Haus, Santa Cruz, CA - Summer Comfort without Air Conditioning

### **Proof in Practice**

#### A Passive House in a Heat Wave



Midori Haus, Santa Cruz, CA - Summer Comfort without Air Conditioning



#### Passive House Planning Package (PHPP) for Predictable Performance



- Climate Zone
- Building Form & Orientation
- Building Assembly R Values
- Thermal Mass
- Heat Losses to Ground
- Thermal Bridges
- Air Tightness
- Window U Values, SHGC & Installation
- Shading
- Solar Heat Gains
- Internal Heat Gains
- Internal Heat Recovery
- Heating & Cooling Loads
- Summer Conditions
- Mechanical & Natural Ventilation
- DHW & Solar Thermal
- District Heating
- Plug Loads, Appliances, Lighting
- Source Energy
- CO<sub>2</sub> Emissions
- Occupancy Patterns & Schedules

#### Passive House Planning Package (PHPP) and Cost-Optimization



**Heating & Cooling Demand** 

**Design Value Adjustment** 

#### **Perspective: Our California Projects**

![](_page_15_Figure_1.jpeg)

#### **Perspective: Our California Projects**

![](_page_16_Figure_1.jpeg)

### **Questions About Wider Adoption**

- How Well Does Passive House Work in other California Climates? (Milder Has More Houses, Harsher Offers More Savings)
- 2. How Does Passive House Compare with 2013 Title 24 (CA Energy Code)?
- 3. What is Generally Required in Other California Climates?
- 4. What are the Most Effective Improvements?

#### Study: CA Code → Passive House 2013 California Code vs. Passive House

- Analysis of California Code-Minimum Construction in Passive House Planning Package (PHPP 8.4) by Climate Zone.
- Step by Step Analysis of Cost Effective Upgrades to Reach Passive House Performance.

#### Study: CA Code → Passive House T24 "Prototype" One Story House

Figure A-1: One Story Prototype Front View

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_3.jpeg)

Source: 2013 Residential Alternative Calculation Method Reference Manual CEC-400-2013-003-SD-REV

#### Study: CA Code → Passive House T24 "Prototype" One Story House

- Conditioned Floor Area: 2100 ft<sup>2</sup>
- Ceiling Height: 9 ft
- Conditioned Volume: 18,900 ft<sup>3</sup>
- Slab Area: 2100 ft<sup>2</sup>
- Slab Perimeter: 162 ft
- Ceiling Area: 2100 ft<sup>2</sup>
- Glazing: 5% "Conditioned Floor Area" (CFA) in Each Direction (108 ft<sup>2</sup>)
- 12" Overhangs

![](_page_20_Figure_9.jpeg)

Source: 2013 Residential Alternative Calculation Method Reference Manual CEC-400-2013-003-SD-REV

#### Study: CA Code $\rightarrow$ Passive House

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_0.jpeg)

### Title 24 vs. PH Energy Modeling

![](_page_23_Figure_1.jpeg)

### **Performance vs. Compliance**

#### 2012 GMC Yukon Denali 1500 (15 MPG)

![](_page_24_Picture_2.jpeg)

#### 2012 Yukon Denali 1500 Hybrid (21 MPG)

![](_page_24_Picture_4.jpeg)

40% (6 MPG) Improvement

2012 Honda Civic HF (33 MPG)

![](_page_24_Picture_7.jpeg)

2012 Honda Civic Hybrid (44 MPG)

![](_page_24_Picture_9.jpeg)

33% (11 MPG) Improvement

Reference: www.fueleconomy.gov, US DOE

Performance is an absolute standard, compliance is always relative.

### **Compliance Approach**

#### Compares the Building to Itself, Not to a Standard

![](_page_25_Figure_2.jpeg)

|                    | Low Rise | Bungalow | 'L' Shape |
|--------------------|----------|----------|-----------|
| Surface/Floor Area | 2.1:1    | 3.0:1    | 3.5:1     |
| UA (R11 Shell)     | 384      | 544      | 567       |
| UA (R17 Shell)     | 248      | 352      | 357       |
| Improvement        | 35%      | 35%      | 35%       |
| Total Heat Flow    | x1.0     | x1.4     | x1.5      |

#### Compliance is "Sticky" to Baseline Regardless of Reference Point

**Compliance vs. Construction Cost** 

![](_page_26_Figure_2.jpeg)

### **Orientation & Shading Matter**

![](_page_27_Picture_1.jpeg)

Cliff Dwelling, Mesa Verde, CO (Wikipedia)

![](_page_27_Picture_3.jpeg)

Priene, Ancient Greece (Solarpedia)

...without purpose they wrought all things in confusion. They had neither knowledge of houses built of bricks and turned to face the sun nor yet of work in wood; but dwelt beneath the ground like swarming ants, in sunless caves - Aeschylus, PROMETHEUS BOUND

#### Air Sealing Matters for Health

![](_page_28_Picture_1.jpeg)

Source: Terry Nordbye, The Practical House

A Washington State University Extension Energy Program (WSU-EEP) study found that up to 40% of the air in the test homes originated in the crawl space.

# Air Sealing Matters

![](_page_29_Figure_1.jpeg)

#### 9 mph Wind = -30% R Value (Dupont, 2007)

#### Air Sealing Matters for Durability

![](_page_30_Figure_1.jpeg)

- Air movement accounts for 98%+ of water vapor movement in building cavities
- Canadian Study (One Heating Season, Indoors @ 70ºF, 40% RH)
  - Diffusion: 4'x8' sheet of drywall = 1/3 quart of water
  - Infiltration: 1 in<sup>2</sup> hole = 30 quarts of water
  - 90:1 ratio!!!

In Quickly (Air Leakage) - Out Slowly (Diffusion) = Accumulation

#### Air Sealing Matters for Durability

![](_page_31_Figure_1.jpeg)

- Air movement accounts for 98%+ of water vapor movement in building cavities
- Canadian Study (One Heating Season, Indoors @ 70ºF, 40% RH)
  - Diffusion: 4'x8' sheet of drywall = 1/3 quart of water
  - Infiltration: 1 in<sup>2</sup> hole = 30 quarts of water
  - 90:1 ratio!!!

"Walls don't need to breathe, but they do need to sweat!!!"

## Air Sealing Matters

#### for Performance

- 30-50% of Space Conditioning Energy (DOE)
- 9 MPH Wind = -30% R-Value (DuPont, 2007)
- Average US House: 3 ft<sup>2</sup> of Holes
- Typical 2500 ft<sup>2</sup> Home: ½ Mile of Cracks

![](_page_32_Figure_6.jpeg)

Investigation of the Impact of Commercial Building Envelope Airtightness on HVAC Energy Use (NISTIR 7238) - NIST, US D.O.C. Table 6 Energy cost savings for office building

| City        | Gas<br>Savings |     | Electrical<br>Savings |      | Total<br>Savings |
|-------------|----------------|-----|-----------------------|------|------------------|
| Bismarck    | \$1,854        | 42% | \$1,340               | 26%  | \$3,195          |
| Minneapolis | \$1,872        | 43% | \$1,811               | 33%  | \$3,683          |
| St. Louis   | \$1,460        | 57% | \$1,555               | 28%  | \$3,016          |
| Phoenix     | \$124          | 77% | \$620                 | - 9% | \$745            |
| Miami       | \$0            | 0%  | \$769                 | 10%  | \$769            |

Table 8 Energy cost savings for retail building

| City        | Gas Sa  | vings | Electi<br>Savii | rical<br>ngs | Total<br>Savings |
|-------------|---------|-------|-----------------|--------------|------------------|
| Bismarck    | \$1,835 | 26%   | \$33            | 2%           | \$1,869          |
| Minneapolis | \$1,908 | 28%   | \$364           | 18%          | \$2,272          |
| St. Louis   | \$1,450 | 38%   | \$298           | - 9%         | \$1,748          |
| Phoenix     | \$176   | 64%   | \$992           | 14%          | \$1,169          |
| Miami       | \$6     | 98%   | \$1,224         | 14%          | \$1,231          |

Table 10 Energy cost savings for apartment building

| City        | Gas<br>Savings |     | Electric<br>Savings | al   | Total<br>Savings |
|-------------|----------------|-----|---------------------|------|------------------|
| Bismarck    | \$2,187        | 40% | -\$116              | -9%  | \$2,071          |
| Minneapolis | \$2,421        | 43% | -\$165              | -14% | \$2,256          |
| St. Louis   | \$1,794        | 57% | -\$232              | -12% | \$1,562          |
| Phoenix     | \$133          | 65% | \$0                 | 0%   | \$133            |
| Miami       | \$31           | 63% | \$380               | 9%   | \$411            |

#### Passive House: 60-70% Savings, BEFORE PV

#### **Air Sealing Matters** for Predictable Performance

- ACH<sub>NAT</sub> Very Unpredictable
- "Infiltration: Just ACH<sub>50</sub> Divided by 20?"
  - Alan Meier, Home Energy Magazine, January/February 1994
- "Translating blower door measurements into an average infiltration rate has bedeviled the retrofitter and researcher alike."
- N = C \* H \* S \* L
  - C = climate factor
  - H = height factor
  - S = wind shielding factor
  - L = leakiness factor

![](_page_33_Figure_10.jpeg)

Figure 1. Climate correction factor, "C," for calculating average inflittation rates in North America. Note that the glimete correction factor depends on both average temperatures and windiness. It sits includes possible air inflittation during the cooling sesson. For these reasons, locations in grantly dissimilar climates, such as texas and Versitis air faith average text of the value nearest to the house's location and send it in climates, such as texas and versitis deal on data from 250 weather stations.

Source: PHI

#### **Air Sealing Matters** for Predictable Performance

- ACH<sub>NAT</sub> Very Unpredictable
- "Infiltration: Just ACH<sub>50</sub> Divided by 20?"
  - Alan Meier, Home Energy Magazine, January/February 1994
- "Translating blower door measurements into an average infiltration rate has bedeviled the retrofitter and researcher alike."
- N = C \* H \* S \* L
  - C = climate factor
  - H = height factor
  - S = wind shielding factor
  - L = leakiness factor

![](_page_34_Picture_10.jpeg)

![](_page_34_Figure_11.jpeg)

Source: PHI

### **Insulate Slabs!**

United States Average Annual Temperature (Fahrenheit)

![](_page_35_Picture_2.jpeg)

CA Ground Temp. – Fine in Summer, Winter's a Bummer!

### **The Windows Matter**

#### **For Performance**

Energy Star Double Pane U = 0.3 (R3)

![](_page_36_Picture_3.jpeg)

VS.

![](_page_36_Picture_5.jpeg)

**Passive House** Triple Pane U = 0.12 (R8)

#### The Windows Matter For Performance

![](_page_37_Figure_1.jpeg)

R10 (R8 Window)

R10 (R3 Window)

R14 (R8 Window)

R14 (19.4" Cavity)

#### The Windows Matter For Performance

![](_page_38_Figure_1.jpeg)

R10 (R8 Window)

R10 (R3 Window)

R18 (R8 Window)

R17 (R3 Window)

#### **Thermal Bridges**

| <u>Material</u>       | "R" Value    |
|-----------------------|--------------|
| Aluminum              | 0.0006/in    |
| Steel                 | 0.04/in      |
| Concrete              | 0.08/in      |
| Glass (Single Pane)   | ~1           |
| Glass (Double Pane)   | 2 to 4       |
| Glass (Triple Pane)   | 3 to 11      |
| Wood                  | 1.25/in      |
| Icynene Spray Foam    | 3.6/in       |
| Fiberglass            | 3.14-4.30/in |
| Cellulose             | 3.70/in      |
| EPS Foam              | 4.00/in      |
| XPS Foam              | 5.00/in      |
| CC Spray Foam         | 6.25/in      |
| Poly-Iso (Foil Faced) | 7.20/in      |

![](_page_39_Picture_3.jpeg)

#### **Thermal Bridges**

| <u>Material</u>       | <u>"R" Value</u> |
|-----------------------|------------------|
| Aluminum              | 0.0006/in        |
| Steel                 | 0.04/in          |
| Concrete              | 0.08/in          |
| Glass (Single Pane)   | ~1               |
| Glass (Double Pane)   | 2 to 4           |
| Glass (Triple Pane)   | 3 to 11          |
| Wood                  | 1.25/in          |
| Icynene Spray Foam    | 3.6/in           |
| Fiberglass            | 3.14-4.30/in     |
| Cellulose             | 3.70/in          |
| EPS Foam              | 4.00/in          |
| XPS Foam              | 5.00/in          |
| CC Spray Foam         | 6.25/in          |
| Poly-Iso (Foil Faced) | 7.20/in          |

![](_page_40_Picture_3.jpeg)

![](_page_40_Picture_4.jpeg)

#### The Details Matter Thermal Bridges

![](_page_41_Picture_1.jpeg)

Images: Gavin Healy, Balance Point Home Performance

![](_page_42_Figure_2.jpeg)

![](_page_43_Figure_2.jpeg)

![](_page_44_Picture_2.jpeg)

![](_page_45_Figure_2.jpeg)

#### **Thermal Bridge Analysis of Intersections**

![](_page_46_Figure_2.jpeg)

![](_page_46_Picture_3.jpeg)

2015 ACI California Regional Home Performance Conference · Sacramento, CA

![](_page_47_Figure_2.jpeg)

### The "Duck Curve" and the End of Net-Zero?

![](_page_48_Picture_1.jpeg)

![](_page_48_Figure_2.jpeg)

Energy: 13 GW x 3 hrs / 2 = 19,500,000 kWh / 10 kWh / 70% = 2,790,000 Tesla 10 kW Powerwalls Power: 13 GW / 2 kW = 6,500,000 Tesla 10 kW Powerwalls California: 12% Renewable in 2014, 33% by 2030, 50% Renewable by 2050

## The Dao of Tau ∂

![](_page_49_Picture_1.jpeg)

![](_page_49_Figure_2.jpeg)

of **T** 

## The Dao of Tau

Unheated Building vs.  $\tau$  (San Francisco, CA, December)

![](_page_50_Figure_2.jpeg)

of **T** 

![](_page_51_Figure_1.jpeg)

![](_page_52_Figure_1.jpeg)

![](_page_53_Figure_1.jpeg)

![](_page_54_Figure_1.jpeg)

![](_page_55_Figure_1.jpeg)

#### **Proof in Practice**

#### Passive House "Flattened" Seasonal Energy Use

![](_page_56_Picture_2.jpeg)

2869 kWh Elec. + 50 Therms (1,465 kWh) Nat. Gas = 4,334 kWh (before PV!) Before Retrofit 21,928 kWh/yr, Similar CA Home 19,596 kWh/yr

### **Proof in Practice**

#### Passive House "Flattened" Seasonal Energy Use

![](_page_57_Figure_2.jpeg)

2869 kWh Elec. + 50 Therms (1,465 kWh) Nat. Gas = 4,334 kWh (before PV!) Before Retrofit 21,928 kWh/yr, Similar CA Home 19,596 kWh/yr

#### Where Does Our Energy Go? Average PG&E Household (1584 ft<sup>2</sup>)

![](_page_58_Figure_1.jpeg)

**PG&E Household Electricity Use** 

![](_page_58_Figure_2.jpeg)

Electricity: 6446 kWh/yr

Natural Gas: 399 Therms/yr

Reference: 2009 Residential Appliance Saturation Survey (RASS), California Energy Commission (CEC)

#### Where Does Our Energy Go? Average PG&E Household (1584 ft<sup>2</sup>)

![](_page_59_Figure_1.jpeg)

Reference: 2009 Residential Appliance Saturation Survey (RASS), California Energy Commission (CEC)

#### Where Does Our Energy Go? Average PG&E Household (1584 ft<sup>2</sup>)

![](_page_60_Figure_1.jpeg)

Reference: 2009 Residential Appliance Saturation Survey (RASS), California Energy Commission (CEC)

# **Thank You! Questions?** 16 13

### **Graham Irwin**

Principal, Essential Habitat Architecture www.essentialhabitat.com

![](_page_61_Picture_3.jpeg)